I don’t get it. For the average consumer, EVs as they exist right now are fine. Charging is generally 20 mins every 2-3 hours and only on road trips. Charging an EV at home is a trivial technical challenge. I understand that there aren’t chargers on street corners, but vehicles are rarely parked more than 20 feet from some kind of electrical service.
The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly. Rolling out that kind of infrastructure is unnecessary, and hydrogen has already showed that it doesn’t work. We only did it with gasoline because there was no other way.
I can see liquid fuel being useful in certain applications, but for the typical consumer, BEVs are the way to go.
I can explain. You’re thinking like a scientist, not a capitalist. Money will go into this tech because it forces you to be dependent on that charging system. They want that. It’s better margins than electricity creation.
For the average consumer most EVs are too expensive. The batteries probably aren’t going to get much cheaper due to the rarity and expense of lithium. Finding a better battery tech could make the whole idea of mass electric car ownership make sense. I do wish people would stop caring about the range issue so much tho. Just charge the battery every night and you’ll almost never need more then 80 miles of range
I hope we drop the idea of mass car ownership tho. Effective mass public transit and micro mobility seems like a much safer and more efficient direction to go
Doubtful this will plan out tho. These articles are basically just corporate press releases. A couple of these battery techs might pan out and work at scale
Any base on those claims that batteries aren’t going to get cheaper? They have been for 15 years. There is still progress to be made. There are LFP that get rod of cobalt. There are sodium batteries in testing that will reduce lithium demand.
Their claim about lithium being rare is nonsense as well. There’s no lithium shortage, there’s more a shortage of refineries and battery packaging plants (which means by building more, batteries will continue getting cheaper) and other rare earth metals, which is more of an issue, but like you say, the harder to source ones are being phased out of battery design.
Batteries almost certainly will get cheaper. Lithium isn’t particularly rare. There are sources where it isn’t economical to extract it currently. That’s what “reserves” measure: a source that is economical to extract right now.
We tend to find new ways to extract minerals, which expands our reserves. Happens all the time, and lithium is no exception. The big one right now is the Salton Sea and seawater extraction in general.
There’s also an interesting (string-based method)[https://engineering.princeton.edu/news/2023/09/07/revolutionizing-lithium-production-string] that could bring costs down and avoid the large pools of water that cause environmental damage and high water usage of current methods. It still needs to be proven at scale, however. I usually don’t like to focus on any singular advancement; battery tech advances by trying 100 things, and 10 of them are practical at scale. This one does look promising, though.
How do I charge the battery every night when I don’t own a home but rent. No apartment complex will install a charging station just for me. And I will never own a home. So how do I charge this electric car?
That’s when governments comes in.
In france every new building has to be built with planning for charging equipment to be installed by anyone requesting it.
For older buildings you have the right to ask for a full installation (it will obviously cost more)
It’s trivial to add electrical sockets in a parking lot with electrical already running through/near it. This is like wondering how on earth electric light bulbs could be installed outside back in 1900. My sister lives in ND and most complexes already have outlets for each parking space for block heaters.
It’s because people have this mindset that they might need to travel 600+kms twice a year, therefore they need a 700km range BEV because Despite 99% of their car usage is sub 200km ( and 90% is sub 100) it is somehow prudent to carry all that extra battery material and weight around unused
I think hydrogen makes sense in a few applications namely trucking and long range cars for the few who need it, though I would say it’s probably better to invest heavily in trains and handle most shipping with trains then put the stuff on trucks for the last 50kms and stuff
The only place I see liquid fuel being used is in commercial transportation, particularly in shipping and rail. Anhydrous ammonia would be perfect for shipping, and a nightmare anywhere else. That shit will fucking kill you in an instant, and those who survive just wish they were dead.
So it should only be used in highly regulated professional settings.
That said, it’s still a wonderful fuel option for those settings.
This electrolyte swaps shit? I see it as an attempt to reuse all that gas station infrastructure all over the place.
EV chargers are all over as well these days, but they’re still not anything near as ubiquitous and gas stations.
I just want a half decent second hand EV that will do 120 miles, for a reasonable price.
I can buy an acceptable ICE car for £5k, and it’ll do that.
But at that price range, the only BEVs can get are shagged leafs that will do 50 miles on a good day.
The really annoying thing, is that 95% of my journeys are sub 50 miles. But I’m not willing to spend more than half the journey time charging midway through.
I test drove a Leaf and honestly it felt bad brand new. I got range anxiety just taking it on the highway and back to the dealer.
So far, I think Tesla has a monopoly on practical EVs. Say what you will about the cars (or their leadership) but the charger network they built out and having ~150 miles of actual range is hard to beat in an existing product.
The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly.
I don’t necessarily disagree with that but I hope you see that this type of infrastructure is exactly what we currently have and have proven to work.
It wouldn’t be that stupid to reuse an existing infrastructure that is already built. The issue with our current fuel infrastructure is that it is moving fossil fuel.
What I don’t get is how gasoline even has an infrastructure. It’s delivered by trucks. If you replace the manufacture and dispensing with new equpement, what infrastructure are you left with? Trucks?
Fossil fuel is so energy dense you can get away with pretty much any way to distribute/dispense.
what infrastructure are you left with? Trucks?
Trucks and most importantly thousands of strategically located gas stations. Even if you distribute a different kind and less dense energy I would argue it still makes sense to have spread out stations all over the place.
If we want to keep using our existing roads and highways we will need those stations even if they distribute something entirely different.
Then what about trucking? Lithium is not nearly as energy dense, weighs a lot, and does take a significant longer time to charge than a diesel to refuel. If you don’t believe me, look up the eCascadia by Frightliner. They are probably the current best option if you wanted a heavy electric truck, but they only get to around 200 miles with a load (for reference, a standard turbo diesel one would go around 600-800 miles and only take 30 min to refuel).
Currently in trucking, I’ve found that everyone kinda laughs at the idea of electrification (except on medium duty, that wouldn’t be too hard, just overly expensive). Current electric motors are fine, it’s just that the energy storage is nowhere near what is needed for actual use.
Yes, for most consumers current lithium is fine from a usability perspective, but from a cost one this might provide a much more useful alternative (assuming the cost isn’t insane).
Pretty much everything you said was said about passenger cars 15 years ago. Can’t fix every problem right away. as much as 85% of trucking is under 200 miles (by freight tonnage). This defeatist mentality of ‘it won’t work for this application, or this application, it’ll never change’ will always fail as technology and engineering improves.
The Tesla semi proved that fully loaded 450+ mi trucking is not only possible but better in every way, Pepsi is eager to incorporate them and Walmart too. Here’s the trick, Walmart and other companies doesn’t give a shit about charge times as long as it’s manageable, if it ends up saving even a dollar per freight delivery, they will switch. If it never improved and legit took 4 hours per 200 miles, companies will set up relay trucking. Trucking itself will change if technology can’t. It’s always about money, charge times only bother the driver
Most vehicles stay parked for at least 12 hours a day. The average American vehicle is driven 35 miles a day. A standard 15A 120V outlet would do fine. They can also be set to only draw power during off peak hours when electricity is cheap and plentiful.
I think running a few dozen feet of wire is easier than inventing a new kind of fuel.
Most people don’t live in the US, also a lot of people don’t live in single family homes and park on the street. No garage means you need to install lots of on street chargers.
Which amount to basically extension cords with relays. All the tech for charging is already built into the vehicles. Most people could live happily with just 20A at 240V.
I don’t see how inventing and rolling out the infrastructure for an entirely new kind of fuel/energy storage tech is easier than just running some more wiring. If they charge at night when the office building/apartment/transit energy use is minimized, it won’t even put that much strain on the grid.
And you get to keep all the existing benefits for single family home people. Sprinkle in some vehicle to grid, and it gets even better.
Apparently, no one read the article. The primary application of this was for the military. The article is based on research done by DARPA. For military use, lithium ion batteries have way too short of a lifespan and the charge times are too long. Also, they can catch fire and burn for a long time, probably a real problem in a military context.
Flow batteries can mitigate all these issues and they’re cheaper and lighter. They can be made from inexpensive materials that are more readily available than lithium.
Given these benefits, it seems obvious that consumer applications will take off. The original researchers see an opportunity here and that’s why they formed a company.
Your cited lithium ion “20 min” charge time is for super chargers only, and in many cases is actually more like 40-45 minutes. Also, super charging is bad for the battery. In all other cases, you’ll be using an L1 or L2 charger which will take anywhere from 8 hours to 72 hours to charge a vehicle.
And, eventually, the lithium ion battery will lose its range as the battery degrades, making the whole car as disposable as that 3-4 year old smartphone you had to toss because the battery can’t hold a charge anymore. Flow batteries will keep refuel times to the same as they are today, and the material can be recharged up to 10,000 times, a huge improvement over lithium ion. And, the lifespan of your car won’t be literally glued and bolted to the lifespan of your battery.
Why do people get hung up on the supercharging stop they would need to make 2-3 times a year and ignore the 40x a year they currently go out of their way to wait in line for cheap gas at Costco?
Also, there are Teslas with 250k miles and 90% range. The batteries can already outlast their vehicles, and finally, recycling batteries is possible and a lucrative business.
I have a minimum of eight ~500 mile drives I have to make in a year. I drive a plated and insured golf cart for most of my trips but theirs no way I’m tethering myself to a power cord when I can, with great confidence, pull over and fill my minivan in ~5 minutes wherever I’m at once I get to a quarter tank of fuel. I also end up with several trips a month where having a minivan is convenient as hell. I’d love to be able to reasonably jettison fossil fuels at some point so I don’t understand the criticism towards discovery, engineering, and evaluation of a broad spectrum of solutions and applications.
It has many benefits. Many. At least if article is correct. Doesn’t burn. It allows for energy storage which is huge when you take into the account renewable energy generation. It might even allow you to store surplus at home. It’s less weight which results in less consumption.
Also what makes you say that hydrogen failed. AFAIK perhaps for cars is not viable right now, but for bigger vehicles it might be very convenient.
Edit: also doesn’t require huge improvements of energy infrastructure.
It seems to me that we’ll be living in a world with multiple solutions to the “fuel problem”. In a city environment, maybe the lithium solution will be the best way to go, but we can’t ignore that it isn’t scalable for other uses. It’s interesting to see how fossil fuels are powerful by the way they solve many problems at once; of course, after we built the insane infrastructure to support it.
We need every thing we got to beat climate change.
Technically, yes. Most of the time. Beyond that, no. It isn’t good enough for a great deal of people. Lithium batteries are hard to recycle, hard and expensive as hell to replace, give constantly diminishing returns as range goes down every year it’s owned, people in apartments can’t charge them without going to charge stations that are more expensive than gasoline, and range anxiety is very much a thing that prevents anyone from exclusively owning electric vehicles.
Transportable fluid that holds more density than lithium (which means vehicles won’t be so heavy which saves on a lot of issues) and doesn’t require a nationwide restructuring of the electrical grid system seems like a way better idea than adding an extra 1200 pounds of battery that will cost $12,000 to replace when it goes bad.
I only wonder if the liquid can be safely disposed of or recycled/sustained. Regardless, setting up a system to use this would take two decades to really implement and we should have solid state batteries before then that should get rid of quite a few of the several shortcomings of lithium batteries.
I don’t get it. For the average consumer, EVs as they exist right now are fine. Charging is generally 20 mins every 2-3 hours and only on road trips. Charging an EV at home is a trivial technical challenge. I understand that there aren’t chargers on street corners, but vehicles are rarely parked more than 20 feet from some kind of electrical service.
The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly. Rolling out that kind of infrastructure is unnecessary, and hydrogen has already showed that it doesn’t work. We only did it with gasoline because there was no other way.
I can see liquid fuel being useful in certain applications, but for the typical consumer, BEVs are the way to go.
I can explain. You’re thinking like a scientist, not a capitalist. Money will go into this tech because it forces you to be dependent on that charging system. They want that. It’s better margins than electricity creation.
For the average consumer most EVs are too expensive. The batteries probably aren’t going to get much cheaper due to the rarity and expense of lithium. Finding a better battery tech could make the whole idea of mass electric car ownership make sense. I do wish people would stop caring about the range issue so much tho. Just charge the battery every night and you’ll almost never need more then 80 miles of range
I hope we drop the idea of mass car ownership tho. Effective mass public transit and micro mobility seems like a much safer and more efficient direction to go
Doubtful this will plan out tho. These articles are basically just corporate press releases. A couple of these battery techs might pan out and work at scale
Any base on those claims that batteries aren’t going to get cheaper? They have been for 15 years. There is still progress to be made. There are LFP that get rod of cobalt. There are sodium batteries in testing that will reduce lithium demand.
Their claim about lithium being rare is nonsense as well. There’s no lithium shortage, there’s more a shortage of refineries and battery packaging plants (which means by building more, batteries will continue getting cheaper) and other rare earth metals, which is more of an issue, but like you say, the harder to source ones are being phased out of battery design.
deleted by creator
Batteries almost certainly will get cheaper. Lithium isn’t particularly rare. There are sources where it isn’t economical to extract it currently. That’s what “reserves” measure: a source that is economical to extract right now.
We tend to find new ways to extract minerals, which expands our reserves. Happens all the time, and lithium is no exception. The big one right now is the Salton Sea and seawater extraction in general.
There’s also an interesting (string-based method)[https://engineering.princeton.edu/news/2023/09/07/revolutionizing-lithium-production-string] that could bring costs down and avoid the large pools of water that cause environmental damage and high water usage of current methods. It still needs to be proven at scale, however. I usually don’t like to focus on any singular advancement; battery tech advances by trying 100 things, and 10 of them are practical at scale. This one does look promising, though.
How do I charge the battery every night when I don’t own a home but rent. No apartment complex will install a charging station just for me. And I will never own a home. So how do I charge this electric car?
That’s when governments comes in. In france every new building has to be built with planning for charging equipment to be installed by anyone requesting it. For older buildings you have the right to ask for a full installation (it will obviously cost more)
It’s trivial to add electrical sockets in a parking lot with electrical already running through/near it. This is like wondering how on earth electric light bulbs could be installed outside back in 1900. My sister lives in ND and most complexes already have outlets for each parking space for block heaters.
Same for my whole city that is hilly and private garages are rare, people park on the roadside
It’s because people have this mindset that they might need to travel 600+kms twice a year, therefore they need a 700km range BEV because Despite 99% of their car usage is sub 200km ( and 90% is sub 100) it is somehow prudent to carry all that extra battery material and weight around unused
I think hydrogen makes sense in a few applications namely trucking and long range cars for the few who need it, though I would say it’s probably better to invest heavily in trains and handle most shipping with trains then put the stuff on trucks for the last 50kms and stuff
deleted by creator
Hydrogen is also important in construction when utilities aren’t typically present.
The only place I see liquid fuel being used is in commercial transportation, particularly in shipping and rail. Anhydrous ammonia would be perfect for shipping, and a nightmare anywhere else. That shit will fucking kill you in an instant, and those who survive just wish they were dead.
So it should only be used in highly regulated professional settings.
That said, it’s still a wonderful fuel option for those settings.
This electrolyte swaps shit? I see it as an attempt to reuse all that gas station infrastructure all over the place.
EV chargers are all over as well these days, but they’re still not anything near as ubiquitous and gas stations.
I just want a half decent second hand EV that will do 120 miles, for a reasonable price.
I can buy an acceptable ICE car for £5k, and it’ll do that.
But at that price range, the only BEVs can get are shagged leafs that will do 50 miles on a good day.
The really annoying thing, is that 95% of my journeys are sub 50 miles. But I’m not willing to spend more than half the journey time charging midway through.
I test drove a Leaf and honestly it felt bad brand new. I got range anxiety just taking it on the highway and back to the dealer.
So far, I think Tesla has a monopoly on practical EVs. Say what you will about the cars (or their leadership) but the charger network they built out and having ~150 miles of actual range is hard to beat in an existing product.
EVs are fairly new while ICE vehicles have been produced for 100 years. This is why you can get an ICE for $5k but currently not an EV.
I don’t necessarily disagree with that but I hope you see that this type of infrastructure is exactly what we currently have and have proven to work.
It wouldn’t be that stupid to reuse an existing infrastructure that is already built. The issue with our current fuel infrastructure is that it is moving fossil fuel.
What I don’t get is how gasoline even has an infrastructure. It’s delivered by trucks. If you replace the manufacture and dispensing with new equpement, what infrastructure are you left with? Trucks?
It all relates to the density of energy in fuel.
Fossil fuel is so energy dense you can get away with pretty much any way to distribute/dispense.
Trucks and most importantly thousands of strategically located gas stations. Even if you distribute a different kind and less dense energy I would argue it still makes sense to have spread out stations all over the place.
If we want to keep using our existing roads and highways we will need those stations even if they distribute something entirely different.
Then what about trucking? Lithium is not nearly as energy dense, weighs a lot, and does take a significant longer time to charge than a diesel to refuel. If you don’t believe me, look up the eCascadia by Frightliner. They are probably the current best option if you wanted a heavy electric truck, but they only get to around 200 miles with a load (for reference, a standard turbo diesel one would go around 600-800 miles and only take 30 min to refuel).
Currently in trucking, I’ve found that everyone kinda laughs at the idea of electrification (except on medium duty, that wouldn’t be too hard, just overly expensive). Current electric motors are fine, it’s just that the energy storage is nowhere near what is needed for actual use.
Yes, for most consumers current lithium is fine from a usability perspective, but from a cost one this might provide a much more useful alternative (assuming the cost isn’t insane).
Pretty much everything you said was said about passenger cars 15 years ago. Can’t fix every problem right away. as much as 85% of trucking is under 200 miles (by freight tonnage). This defeatist mentality of ‘it won’t work for this application, or this application, it’ll never change’ will always fail as technology and engineering improves.
The Tesla semi proved that fully loaded 450+ mi trucking is not only possible but better in every way, Pepsi is eager to incorporate them and Walmart too. Here’s the trick, Walmart and other companies doesn’t give a shit about charge times as long as it’s manageable, if it ends up saving even a dollar per freight delivery, they will switch. If it never improved and legit took 4 hours per 200 miles, companies will set up relay trucking. Trucking itself will change if technology can’t. It’s always about money, charge times only bother the driver
Putting a charger on every street parking location will become disproportionately expensive.
Most vehicles stay parked for at least 12 hours a day. The average American vehicle is driven 35 miles a day. A standard 15A 120V outlet would do fine. They can also be set to only draw power during off peak hours when electricity is cheap and plentiful.
I think running a few dozen feet of wire is easier than inventing a new kind of fuel.
Most people don’t live in the US, also a lot of people don’t live in single family homes and park on the street. No garage means you need to install lots of on street chargers.
Which amount to basically extension cords with relays. All the tech for charging is already built into the vehicles. Most people could live happily with just 20A at 240V.
I don’t see how inventing and rolling out the infrastructure for an entirely new kind of fuel/energy storage tech is easier than just running some more wiring. If they charge at night when the office building/apartment/transit energy use is minimized, it won’t even put that much strain on the grid.
And you get to keep all the existing benefits for single family home people. Sprinkle in some vehicle to grid, and it gets even better.
No, it won’t. Chargers are already on every bloody street, they’re called lamp posts. You just need to retrofit a plug into them.
Apparently, no one read the article. The primary application of this was for the military. The article is based on research done by DARPA. For military use, lithium ion batteries have way too short of a lifespan and the charge times are too long. Also, they can catch fire and burn for a long time, probably a real problem in a military context.
Flow batteries can mitigate all these issues and they’re cheaper and lighter. They can be made from inexpensive materials that are more readily available than lithium.
Given these benefits, it seems obvious that consumer applications will take off. The original researchers see an opportunity here and that’s why they formed a company.
Your cited lithium ion “20 min” charge time is for super chargers only, and in many cases is actually more like 40-45 minutes. Also, super charging is bad for the battery. In all other cases, you’ll be using an L1 or L2 charger which will take anywhere from 8 hours to 72 hours to charge a vehicle.
And, eventually, the lithium ion battery will lose its range as the battery degrades, making the whole car as disposable as that 3-4 year old smartphone you had to toss because the battery can’t hold a charge anymore. Flow batteries will keep refuel times to the same as they are today, and the material can be recharged up to 10,000 times, a huge improvement over lithium ion. And, the lifespan of your car won’t be literally glued and bolted to the lifespan of your battery.
Why do people get hung up on the supercharging stop they would need to make 2-3 times a year and ignore the 40x a year they currently go out of their way to wait in line for cheap gas at Costco?
Also, there are Teslas with 250k miles and 90% range. The batteries can already outlast their vehicles, and finally, recycling batteries is possible and a lucrative business.
I have a minimum of eight ~500 mile drives I have to make in a year. I drive a plated and insured golf cart for most of my trips but theirs no way I’m tethering myself to a power cord when I can, with great confidence, pull over and fill my minivan in ~5 minutes wherever I’m at once I get to a quarter tank of fuel. I also end up with several trips a month where having a minivan is convenient as hell. I’d love to be able to reasonably jettison fossil fuels at some point so I don’t understand the criticism towards discovery, engineering, and evaluation of a broad spectrum of solutions and applications.
It has many benefits. Many. At least if article is correct. Doesn’t burn. It allows for energy storage which is huge when you take into the account renewable energy generation. It might even allow you to store surplus at home. It’s less weight which results in less consumption.
Also what makes you say that hydrogen failed. AFAIK perhaps for cars is not viable right now, but for bigger vehicles it might be very convenient.
Edit: also doesn’t require huge improvements of energy infrastructure.
It seems to me that we’ll be living in a world with multiple solutions to the “fuel problem”. In a city environment, maybe the lithium solution will be the best way to go, but we can’t ignore that it isn’t scalable for other uses. It’s interesting to see how fossil fuels are powerful by the way they solve many problems at once; of course, after we built the insane infrastructure to support it.
We need every thing we got to beat climate change.
Technically, yes. Most of the time. Beyond that, no. It isn’t good enough for a great deal of people. Lithium batteries are hard to recycle, hard and expensive as hell to replace, give constantly diminishing returns as range goes down every year it’s owned, people in apartments can’t charge them without going to charge stations that are more expensive than gasoline, and range anxiety is very much a thing that prevents anyone from exclusively owning electric vehicles.
Transportable fluid that holds more density than lithium (which means vehicles won’t be so heavy which saves on a lot of issues) and doesn’t require a nationwide restructuring of the electrical grid system seems like a way better idea than adding an extra 1200 pounds of battery that will cost $12,000 to replace when it goes bad.
I only wonder if the liquid can be safely disposed of or recycled/sustained. Regardless, setting up a system to use this would take two decades to really implement and we should have solid state batteries before then that should get rid of quite a few of the several shortcomings of lithium batteries.